Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

Nonasodium decatungstodysprosate pentatriacontahydrate

Keiju Sawada and Toshihiro Yamase*

Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan Correspondence e-mail: tyamase@res.titech.ac.jp

Received 25 July 2002 Accepted 16 September 2002 Online 11 October 2002

In the crystal structure of the title compound, Na₉[Dy- $(W_5O_{18})_2$]·35H₂O, the complex anion has approximate D_{4d} symmetry, with Dy-O and W-O distances in the ranges 2.355 (6)-2.405 (6) and 1.715 (7)-2.369 (5) Å, respectively.

Comment

To date, the emission spectra of various polyoxometallolanthanoates have been studied. In particular, trivalent Eu^{3+} ions in polyoxometallates exhibit strong red emissions under excitation of the oxygen-to-metal (M = Mo, W or Nb) polyoxometallate charge-transfer bands ($O \rightarrow M$ ligand-tometal charge transfer, LMCT), and their emission properties have been examined in order to gain a molecular insight into the intramolecular energy transfer to the ${}^{5}D_{0}$ and ${}^{5}D_{1}$ states of Eu^{3+} (Yamase, 1998).

In recent years, we have studied dysprosium oxide solids, which emit in the yellow and blue regions with a resultant white light (Su *et al.*, 1995). Powdered solids of decatungstodysprosate containing trivalent Dy^{3+} show a white or yellow luminescence on irradiation light of wavelength 320 nm, corresponding to the O \rightarrow W LMCT band excitation. In the present study, the crystal structure of nonasodium decatungstodysprosate, Na₉[Dy(W₅O₁₈)₂], as the pentatriacontahydrate, (I), has been determined and it is compared with that of another decatungstodysprosate complex, K₃Na₄H₂[Dy-W₁₀O₃₆]·21H₂O, (II), previously reported by Ozeki & Yamase (1994*a*).

The structure of the complex anion in the title compound, (I), with the atomic numbering, is shown in Fig. 1, the arrangement of the Na polyhedra is shown in Fig. 2 and the crystal structure is shown in Fig. 3. There is one decatungstodysprosate anion, nine Na⁺ cations and 35 water molecules in the asymmetric unit.

The metal–oxygen framework of (I) is almost the same as that found in (II). The Dy–O distances in the two $[W_5O_{18}]^{6-}$ groups of (I) are in the range 2.355 (6)–2.392 (6) Å [average 2.38 (1) Å] for O atoms attached to atoms W1–W4 and 2.391 (6)–2.405 (6) Å [average 2.40 (1) Å] for O atoms

attached to atoms W6–W9; nearly identical values were observed for (II) [average values 2.39 (2) and 2.40 (2) Å, respectively]. The Dy–W distances in (I), which range from 3.7725 (6) to 3.8242 (5) Å [average 3.801 (2) Å], are slightly shorter than those in (II) [average 3.83 (2) Å]. A similar trend has been reported in other decatungstolanthanoate complexes, with Ln = Sm³⁺ (Ozeki & Yamase, 1994) and Gd³⁺ (Yamase *et al.*, 1994). The slight differences originate from the crystal packing of the compounds. The O atoms bonded by the lanthanide atoms in (II) also coordinate to the K⁺ cations in

Figure 1

Figure 2

A view of the decatungstodysprosate anion in (I). Displacement ellipsoids are drawn at the 50% probability level.

Ð

A view of (I), excluding the anion. Displacement ellipsoids are drawn at the 50% probability level [symmetry codes: (i) x, y, 1 + z; (ii) -x, -y, 1 - z; (iii) -x, 1 - y, 1 - z]. The Na⁺ cations are octahedrally coordinated, except for Na9, which is coordinated square-pyramidally.

Figure 3

The crystal structure of (I), viewed down the c axis. Dark spheres denote Na⁺ cations and white spheres denote water O atoms.

Figure 4

A schematic diagram of the NaO_n (n = 5-6) polyhedra linkage system. Single lines indicate Na–O bonds. All water atom labels have been omitted for clarity. There are two groups of edge-shared NaO_n polyhedra, Na1–Na4 (Group A) and Na5–Na9 (Group B). Group B is connected to other B groups at each end by edge-sharing. Four O atoms of the decatungstodysprosate anion are connected to atoms Na1, Na4, Na5 and Na8.

their vicinity. Such a bipolar interaction of these O atoms reduces their electron densities, with a resultant elongation of the Ln-W distances in these salts.

Other lanthanide-incorporating compounds show similar structures, with a variety of Ln–W distances due to the lanthanoid contraction; the Ce–W distances in Na₆H₂[Ce- $(W_5O_{18})_2$]·30H₂O (Iball *et al.*, 1974) are in the range 3.784–3.797 Å (average 3.79 Å), slightly shorter than the Dy–W distances in (I) [average 3.801 (2) Å]. Similarly, the actinide-incorporating compound Na₈[Th(W₅O₁₈)₂]·28H₂O (Griffith *et al.*, 2000) has long Th–W distances (average 3.822 Å) compared with those in (I).

The Na⁺ cations in (I), except for atom Na9, are octahedrally coordinated by O atoms, with Na–O distances in the range 2.658 (8)–2.708 (8) Å [average 2.44 (6) Å], while atom Na9 is square-pyramidally coordinated by O atoms, with Na– O distances in the range 2.286 (8)–2.346 (9) Å [average 2.33 (2) Å]. These NaO_n (n = 5–6) polyhedra are connected by an edge-sharing linkage for Na1–Na4 and Na5–Na9, and by a corner-sharing linkage between Na4 and Na5 sites (Fig. 4). Such hydrated Na⁺ cations interact with the highly charged [LnW₁₀O₃₆]^{9–} anions to balance the charge, leading to a large number of water molecules in the lattice, as exemplified by other sodium salts of decatungstolanthanoate, namely Na₆H₂[Ce(W₅O₁₈)₂]·30H₂O (Iball *et al.*, 1974), Na₆H₃[Sm-(W₅O₁₈)₂]·30H₂O (Yamase *et al.*, 1994).

Experimental

The title compound was synthesized according to the method of Yamase *et al.* (1994) and recrystallized from an aqueous solution at 277 K.

Crystal data Na₉[Dy(W₅O₁₈)₂]·35H₂O Z = 2 $D_{\rm x} = 3.460 \,{\rm Mg}\,{\rm m}^{-3}$ $M_r = 3414.54$ Triclinic, $P\overline{1}$ Mo $K\alpha$ radiation a = 13.0914 (8) Å Cell parameters from 27 035 $b = 20.5067 (12) \text{ \AA}$ reflections c = 12.7721 (6) Å $\theta = 1.6-27.5^{\circ}$ $\mu = 18.78 \text{ mm}^{-1}$ $\alpha = 105.519 (1)^{\circ}$ $\beta = 91.231 \ (2)^{\circ}$ T = 296 (2) K $\gamma = 82.789(2)^{\circ}$ Prism, colourless V = 3277.4 (3) Å³ 0.14 \times 0.12 \times 0.08 mm

Table 1Selected bond distances (Å).

W1-O1			
	1.729 (7)	W6-O27	2.029 (6)
W1-O19	1.800(7)	W6-O36	2.300 (6)
W1-O11	1.950 (6)	W7-O7	1.722 (6)
W1-O14	1.958 (7)	W7-O32	1.795 (6)
W1-O15	2.039 (6)	W7-O24	1.943 (6)
W1-O35	2.315 (6)	W7-O23	1.960 (6)
W2-O2	1.725 (7)	W7-O28	2.041 (7)
W2-O20	1.792 (6)	W7-O36	2.338 (6)
W2-O11	1.935 (6)	W8-O8	1.738 (7)
W2-O12	1.947 (6)	W8-O33	1.778 (6)
W2-O16	2.009 (7)	W8-O24	1.942 (6)
W2-O35	2.301 (5)	W8-O25	1.960 (6)
W3-O3	1.738 (6)	W8-O29	2.021 (6)
W3-O21	1.797 (6)	W8-O36	2.320 (6)
W3-O13	1.947 (6)	W9-O9	1.736 (6)
W3-O12	1.969 (6)	W9-O34	1.786 (6)
W3-O17	1.999 (6)	W9-O26	1.935 (7)
W3-O35	2.305 (6)	W9-O25	1.949 (6)
W4-O4	1.715 (7)	W9-O30	2.025 (6)
W4-O22	1.792 (6)	W9-O36	2.310 (6)
W4-O14	1.943 (7)	W10-O10	1.731 (7)
W4-O13	1.946 (6)	W10-O29	1.882 (6)
W4-O18	2.023 (6)	W10-O28	1.906 (6)
W4-O35	2.369 (5)	W10-O27	1.925 (6)
W5-O5	1.726 (7)	W10-O30	1.940 (6)
W5-O15	1.892 (6)	W10-O36	2.254 (6)
W5-O18	1.893 (6)	Dy-O22	2.355 (6)
W5-O17	1.922 (6)	Dy-O19	2.378 (7)
W5-O16	1.957 (6)	$\dot{Dy} - O20$	2.380 (6)
W5-O35	2.266 (6)	Dy-O34	2.391 (6)
W6-O6	1.730 (7)	Dy-O21	2.392 (6)
W6-O31	1.775 (6)	Dy-O32	2.393 (6)
W6-O23	1.935 (6)	Dy-O33	2.398 (6)
W6-O26	1.966 (6)	Dy-O31	2.405 (6)

Data collection

Rigaku R-AXIS RAPID diffractometer ω scans Absorption correction: numerical (*NUMABS*; Higashi, 1999) $T_{min} = 0.179, T_{max} = 0.315$ 33 444 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.104$ S = 1.1814 785 reflections 821 parameters H-atom parameters not defined 14 785 independent reflections 13 098 reflections with $I > 2\sigma(I)$ $R_{int} = 0.052$ $\theta_{max} = 27.5^{\circ}$ $h = 0 \rightarrow 16$ $k = -26 \rightarrow 26$ $l = -16 \rightarrow 16$

$$\begin{split} w &= 1/[\sigma^2(F_o^2) + (0.0579P)^2 \\ &+ 24.6886P] \\ \text{where } P &= (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\text{max}} &= 0.031 \\ \Delta\rho_{\text{max}} &= 4.44 \text{ e} \text{ Å}^{-3} \\ \Delta\rho_{\text{min}} &= -3.19 \text{ e} \text{ Å}^{-3} \\ \text{Extinction correction: } SHELXL97 \\ (\text{Sheldrick, 1997}) \\ \text{Extinction coefficient: } 0.00070 (3) \end{split}$$

The positions of the water H atoms were not determined. In a difference Fourier map, the highest peak was 0.77 Å from W5 and the deepest hole 1.15 Å from O19.

Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *CrystalStructure* (Molecular Structure Corporation & Rigaku, 2001); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1990); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: TA1388). Services for accessing these data are described at the back of the journal.

References

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Griffith, W. P., Morley-Smith, N., Nogueira, H. I. S., Shoair, A. G. F., Suriaatmaja, M., White, A. J. P. & Williams, D. J. (2000). J. Organomet. Chem. 607, 145–155.
- Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.
- Iball, J., Low, J. N. & Weakley, T. J. R. (1974). J. Chem. Soc. Dalton Trans. pp. 2021–2024.
- Molecular Structure Corporation & Rigaku (2001). CrystalStructure. Version 2.00. MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA, and Rigaku Corporation, 3-9-12 Akishima, Tokyo 196-8666, Japan.
- Ozeki, T. & Yamase, T. (1994a). Acta Cryst. B50, 128-134.
- Ozeki, T. & Yamase, T. (1994b). Acta Cryst. C50, 327-330.
- Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Akishima-shi, Tokyo 196-8666, Japan.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Su, Q., Lin, J. & Li, B. (1995). J. Alloys Compd, 225, 120-123.
- Yamase, T. (1998). Chem. Rev. 98, 307-325.
- Yamase, T., Ozeki, T. & Tosaka, M. (1994). Acta Cryst. C50, 1849-1852.